Students will give presentations in pairs on current experimental research in Quantum Information Processing. Each group has 30 min for the presentation plus 15 minutes for questions. A list of references for the presentation topics can be found below. Each presenter will be assessed by the other students, so that you can find out for yourselves how good your presentation skills are, and how you might improve them. The evaluation form is available here, information slides can be downloaded here.
Currently the following students are assigned for a talk: Frederik Lohof, Tim Menke, Joannis Lukas Viktor Koepsell, Jean-Claude Besse, Oliver Wipfli, David Nadlinger, Lukas Pascal Gerster, Marc Serra Garcia, Gustavo Filipe Ferreira Villares, Valentin Luc Adrien Goblot, Christian Daniel Vázquez Dietiker, Natasja Jovanovic, Maud Charlotte Barthélemy, Andrea Rocchetto, Christoph Fischer, Yuanyuan Deng, Henry Edzard Clausen, Ralf Kohrt, Adrian Ryser, Junxin Chen, Chi Zhang, Kathrin Svenja Gerhard.
Sign-Up
Please remember the following rules for the sign-up and the talks:
1) Every presentation can only be done by a maximum of 2 people.
2) Only enter your name into the name field! Do not sign up as two people in the doodle. Otherwise this might result in overbooking a subject.
3) There are two in-lecture presentations, which should be done in the second hour of the main lecture. All the other presentations are held during the exercise class.
4) For each subject an introductory lecture is given by Andreas Wallraff one week before the presentation, except for the Rydberg atoms, which will be on the same day.
The doodle poll is closed.
Date |
# |
Topic |
Name(s) |
11-04-2014 | 1 | Superconducting Circuits - Quantum Computing (in-lecture presentation) (CE) |
Tim Menke, |
11-04-2014 | 2 | Rydberg Atoms in Cavities - Quantum Feedback (TT) |
Jean-Claude Besse, |
02-05-2014 | 3 | Superconducting Circuits - Adiabatic Quantum Computing (CE) | Lukas Pascal Gerster |
02-05-2014 | 4 | Superconducting Circuits - D-Wave (CE) | Marc Serra Garcia, Gustavo Filipe Ferreira Villares |
09-05-2014 | 5 | Ions - Quantum Simulation (TT) |
Valentin Luc Adrien Goblot, |
09-05-2014 | 6 | Ions/Atoms - Quantum Networks (TT) | Christian Daniel Vázquez Dietiker,David Nadlinger |
16-05-2014 | 7 | NV-Center - Decoherence and Noise (CE) |
Natasja Jovanovic, |
16-05-2014 | 8 | NV-Center - Error correction (CE) | Andrea Rocchetto, Christoph Fischer |
23-05-2014 | 9 | Photons - Bell tests (CE) | Yuanyuan Deng, Henry Edzard Clausen |
23-05-2014 | 10 | Photons - Teleportation (CE) | Ralf Kohrt, Adrian Ryser |
30-05-2014 | 11 | NMR - Shor algorithm (Theory) (TT) | Junxin Chen, Chi Zhang |
30-05-2014 | 12 | NMR - Shor algorithm (Experiment) (TT) | Kathrin Svenja Gerhard |
If there is any problem with the material for presentations, please do not hesitate to contact Tobias Thiele. You need to be signed in to the ETH network with vpn to download the papers.
Material for Presentations
Superconducting Circuits - Quantum Computation
Introductory articles
Clarke, J. & Wilhelm, F.K.
Superconducting quantum bits
Nature 453, 1031 (2008)
Schoelkopf, R.J. & Girvin, S.M.
Wiring up quantum systems
Nature 451, 664 (2008)
Devoret, M.H. & Martinis, J.M.
Implementing Qubits with Superconducting Integrated Circuits
Quant. Inf. Proc, 3 163 (2004)
1. Superconducting Qubits
D. Ristè, J. G. van Leeuwen, H.-S. Ku, K. W. Lehnert, and L. DiCarlo
Initialization by Measurement of a Superconducting Quantum Bit Circuit
Phys. Rev. Lett. 109, 050507 (2012)
L. DiCarlo, M. D. Reed, L. Sun, B. R. Johnson, J. M. Chow, J. M. Gambetta, L. Frunzio, S. M. Girvin, M. H. Devoret & R. J. Schoelkopf
Preparation and measurement of three-qubit entanglement in a superconducting circuit
Nature 467, 7315 (2010)
R. Barends et al.
Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing
arXiv:1402.4848
L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin & R. J. Schoelkopf
Demonstration of two-qubit algorithms with a superconducting quantum processor
Nature 460, 7252 (2009)
Rydberg atoms in Cavities
Introductory articles/books
J. M. Raimond, M. Brune, and S. Haroche
Manipulating quantum entanglement with atoms and photons in a cavity
Rev. Mod. Phys. 73, 565
T. F. Gallagher
Rydberg atoms (book)
2. Rydberg atoms in Cavity: Quantum Feedback
B. Peaudecerf, C. Sayrin, X. Zhou, T. Rybarczyk, S. Gleyzes, I. Dotsenko, J. M. Raimond, M. Brune, and S. Haroche
Quantum feedback experiments stabilizing Fock states of light in a cavity
Phys. Rev. A 87, 042320
C. Sayrin, I. Dotsenko, X. Zhou, B. Peaudecerf, T. Rybarczyk, S. Gleyzes, P. Rouchon, M. Mirrahimi, H. Amini, M. Brune, J-M. Raimond & S. Haroche
Real-time quantum feedback prepares and stabilizes photon number states
Nature, 477, 73 (2011)
X. Zhou, I. Dotsenko, B. Peaudecerf, T. Rybarczyk, C. Sayrin, S. Gleyzes, J. M. Raimond, M. Brune, and S. Haroche
Field Locked to a Fock State by Quantum Feedback with Single Photon Corrections
Phys. Rev. Lett. 108 (2012)
D-Wave
No introductory articles
3. Adiabatic quantum computation
E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda
A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem
arXiv:0104129
J. Roland and N. J. Cerf
Quantum search by local adiabatic evolution
Phys. Rev. A 65, 042308 (2002)
4. D-Wave
M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson & G. Rose
Quantum annealing with manufactured spins
Nature 473, 194–198 (2011)
Sergio Boixo, Troels F. Rønnow, Sergei V. Isakov, Zhihui Wang, David Wecker, Daniel A. Lidar, John M. Martinis & Matthias Troyer
Evidence for quantum annealing with more than one hundred qubits
Nature Physics 10, 218–224 (2014)
Ions/Atoms
Introductory articles
Leibfried, D., Blatt, R., Monroe, C. and Wineland D.
Quantum dynamics of single trapped ions
Review of Modern Physics 75, 281 (2003)
Blatt, R. and Wineland, D.
Entangled states of trapped atomic ions
Nature 453, 1008 (2008)
X. Trapped Ions: Multi-qubit gates
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W. M. Itano, B. Jelenkovic acute, C. Langer, T. Rosenband & D. J. Wineland
Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate
Nature 422, 412-415 (2003)
J. Benhelm, G. Kirchmair, C. F. Roos & . Blatt
Towards fault-tolerant quantum computing with trapped ions
Nature Physics 4, 463 (2008)
5. Trapped Ions: Quantum simulation
Richerme, P., Gong, Z., Lee, A., Senko, C., Smith, J., Foss-Feig, M., Michalakis, S., V. Gorshkov, A., and Monroe, C.
Non-local propagation of correlations in long-range interacting quantum systems
ArXiv:1401.5088 (2014)
Lanyon, B. P., Hempel, C., Nigg, D., Müller, M. et al.
Universal Digital Quantum Simulation with Trapped Ions.
Science 334, 57 (2011)
6. Trapped Ions/Atoms in Cavities: Quantum networks
D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe
Entanglement of single-atom quantum bits at a distance.
Nature 449, 68 (2007)
S. Ritter, C. Nölleke, C. Hahn, A. Reiserer,A. Neuzner,M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann & G.Rempe
An elementary quantum network of single atoms in optical cavities
Nature 484, 195 (2012)
NV-Centers
Introductory articles
7. NV-Centers: Decoherence and Noise
T. van der Sar, Z. H. Wang, M. S. Blok, H. Bernien, T. H. Taminiau, D. M. Toyli, D. A. Lidar, D. D. Awschalom, R. Hanson & V. V. Dobrovitski
Decoherence-protected quantum gates for a hybrid solid-state spin register
Nature 484, 82–86 (2012)
8. NV-Centers: Error Correction
G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann & J. Wrachtrup
Quantum error correction in a solid-state hybrid spin register
Nature (2014)
T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski & R. Hanson
Universal control and error correction in multi-qubit spin registers in diamond
Nature Nanotechnology (2014)
Photons
No Introductory articles
9. Photons: Experimental violation of Bell inequalities with photons
Aspect, A., Grangier, P., Roger, G.
Experimental Realization of EPR-Bohm Gedankenexperiment: A New Violation of Bell's Inequalities.
Phys. Rev. Lett. 49, 91 (1982)
Weihs, G., Jennewein, T., Simon, C. et al.
Violation of Bell inequality under strict Einstein locality conditions.
Phys. Rev. Lett. 81, 5039 (1998)
For comparison to atomic systems and superconducting qubits see also:
Matsukevich, D. N., Maunz, P., Moehring, D. L. et al.
Bell inequality violation with two remote atomic qubits.
Phys. Rev. Lett. 100, 150404 (2008)
Ansmann, M., Wang, H., Bialczak, R. C. et al.
Violation of Bell's inequality in Josephson phase qubits.
Nature 461, 504 (2009)
10. Photons: Experimental demonstrations of teleportation with photons
Bouwmeester, D., Pan, J.-W., Mattle, K. et al.
Experimental quantum teleportation.
Nature 390, 575 (1997)
Ma, X.-S., Herbst, T., Scheidl, T. et al.
Quantum teleportation over 143 kilometres using active feed-forward.
Nature 489, 269 (2012)
Yin, J.et al.
Quantum teleportation and entanglement distribution over 100-kilometre free-space channels.
Nature488,185(2012)
For comparison to atomic systems and superconducting qubits see also:
Barrett, M. D., Chiaverini, J., Schaetz, T. et al.
Deterministic quantum teleportation of atomic qubits.
Nature 429, 737 (2004)
L. Steffen, et al.
Realization of Deterministic Quantum Teleportation with Solid State Qubits.
arXiv:1302.5621
NMR
Introductory articles
Gershenfeld, N. A. and Chuang, I. L.
Bulk Spin-Resonance Quantum Computation
Science 275, 350 (1997)
Vandersypen L. M. K. and Chuang, I. L.
NMR techniques for quantum control and computation
Review of Modern Physics 76, 1037 (2004)
11. NMR: Shor algorithms – Theoretical background
Shor Pieter W.
Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer.
arXiv:quant-ph/9508027 (1995)
Nielsen, Michael A. and Chuang, Isaac L.
Quantum Computation and Quantum Information.
Cambridge University Press (2000)
12. NMR: Shor algorithms – Experimental realization
Vandersypen, L. M. K. et al.
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance.
Nature 414, 883 (2001)
For comparison to optical photons and superconductin qubits see also:
Erik Lucero et al.
Computing prime factors with a Josephson phase qubit quantum processor.
Nature Physics 8, 719 (2012)
Alberto Politi, Jonathan C. F. Matthews, and Jeremy L. O'Brien
Shor’s Quantum Factoring Algorithm on a Photonic Chip.